How many people would like their teeth to look more beautiful? And how many of them avoid dental treatment merely because they fear that they have to sacrifice healthy tooth structure to achieve an aesthetic improvement? These questions cannot be answered, of course. However, dentists who have found it difficult to convince their patients of the advantages of corrective dental treatment because they are scared of injuring their teeth can now offer a conservative alternative in the form of minimally invasive restorations.

How many people would like their teeth to look more beautiful? And how many of them avoid dental treatment merely because they fear that they have to sacrifice healthy tooth structure to achieve an aesthetic improvement? These questions cannot be answered, of course. However, dentists who have found it difficult to convince their patients of the advantages of corrective dental treatment because they are scared of injuring their teeth can now offer a conservative alternative in the form of minimally invasive restorations.

Fig. 1: The patient disliked the gaps in her dentition and wished for the appearance of her teeth to be improved.

Fig. 2: The aesthetic situation was impaired by a gummy smile. The gingival contour was uneven and the teeth appeared barrel-shaped. At the same time, she insisted on preserving the healthy tooth structure of her anterior teeth, and required relatively inexpensive treatment. Mandibular teeth #55 and 44 were congenitally absent. In addition, the patient lost tooth #36 due to endodontic treatment and successful stabilization of the adjacent teeth.

Fig. 3: The gingival contour was corrected in the area between teeth #11 and 21 with a soft-tissue laser. The patient's aesthetic appearance was also impaired by an excessive display of gum tissue (gummy smile). When she smiled, the asymmetrical contours of her gingival tissues became visible. The high dynamics and slanted contour of her lips could not be influenced therapeutically (Fig. 2). Moreover, the teeth appeared barrel-shaped.

Fig. 4: The aesthetic situation was impaired by a gummy smile. The gingival contour was uneven and the teeth appeared barrel-shaped. At the same time, she insisted on preserving the healthy tooth structure of her anterior teeth, and required relatively inexpensive treatment. Mandibular teeth #55 and 44 were congenitally absent. In addition, the patient lost tooth #36 due to endodontic complications.

Fig. 4: The mirror image shows the healed tissue one week after the treatment.

Precisely to prescription
In the case presented here, teeth #11 to 21 were restored with non-prep veneers. The highly translucent IPS e.max Press HF thin and yet stable
Thin veneers, as presented in this case, are fabricated by creating a fully anatomical wax-up, which is pressed and then characterised with stains. IPS e.max Press (Ivoclar Vivadent) is ideally suited for this purpose. This material is composed of lithium disilicate glass-ceramic and is 2.5 to 3 times stronger than other glass-ceramic materials. Having a flexural strength of almost 400 MPa, IPS e.max Press offers exceptional stability (Fig. 5). These characteristics convey sufficient strength to veneers, inlays, crowns and similar restorations to withstand comparably high loads. Furthermore, restorations made of IPS e.max Press look impressively beautiful. The product range includes special press ingots, which offer an increased level of opacity for cases in which the underlying dentin shows through. These ingots effectively mask dark areas and provide a natural-looking aesthetic result, even if the teeth are discoloured.

Precisely to prescription
In the case presented here, teeth #11 to 21 were restored with non-prep veneers. The highly translucent IPS e.max Press HF thin and yet stable
Thin veneers, as presented in this case, are fabricated by creating a fully anatomical wax-up, which is pressed and then characterised with stains. IPS e.max Press (Ivoclar Vivadent) is ideally suited for this purpose. This material is composed of lithium disilicate glass-ceramic and is 2.5 to 3 times stronger than other glass-ceramic materials. Having a flexural strength of almost 400 MPa, IPS e.max Press offers exceptional stability (Fig. 5). These characteristics convey sufficient strength to veneers, inlays, crowns and similar restorations to withstand comparably high loads. Furthermore, restorations made of IPS e.max Press look impressively beautiful. The product range includes special press ingots, which offer an increased level of opacity for cases in which the underlying dentin shows through. These ingots effectively mask dark areas and provide a natural-looking aesthetic result, even if the teeth are discoloured.

Precisely to prescription
In the case presented here, teeth #11 to 21 were restored with non-prep veneers. The highly translucent IPS e.max Press HF thin and yet stable
Thin veneers, as presented in this case, are fabricated by creating a fully anatomical wax-up, which is pressed and then characterised with stains. IPS e.max Press (Ivoclar Vivadent) is ideally suited for this purpose. This material is composed of lithium disilicate glass-ceramic and is 2.5 to 3 times stronger than other glass-ceramic materials. Having a flexural strength of almost 400 MPa, IPS e.max Press offers exceptional stability (Fig. 5). These characteristics convey sufficient strength to veneers, inlays, crowns and similar restorations to withstand comparably high loads. Furthermore, restorations made of IPS e.max Press look impressively beautiful. The product range includes special press ingots, which offer an increased level of opacity for cases in which the underlying dentin shows through. These ingots effectively mask dark areas and provide a natural-looking aesthetic result, even if the teeth are discoloured.

Precisely to prescription
In the case presented here, teeth #11 to 21 were restored with non-prep veneers. The highly translucent IPS e.max Press HF thin and yet stable
Thin veneers, as presented in this case, are fabricated by creating a fully anatomical wax-up, which is pressed and then characterised with stains. IPS e.max Press (Ivoclar Vivadent) is ideally suited for this purpose. This material is composed of lithium disilicate glass-ceramic and is 2.5 to 3 times stronger than other glass-ceramic materials. Having a flexural strength of almost 400 MPa, IPS e.max Press offers exceptional stability (Fig. 5). These characteristics convey sufficient strength to veneers, inlays, crowns and similar restorations to withstand comparably high loads. Furthermore, restorations made of IPS e.max Press look impressively beautiful. The product range includes special press ingots, which offer an increased level of opacity for cases in which the underlying dentin shows through. These ingots effectively mask dark areas and provide a natural-looking aesthetic result, even if the teeth are discoloured.

Thin veneers, as presented in this case, are fabricated by creating a fully anatomical wax-up, which is pressed and then characterised with stains. IPS e.max Press (Ivoclar Vivadent) is ideally suited for this purpose. This material is composed of lithium disilicate glass-ceramic and is 2.5 to 3 times stronger than other glass-ceramic materials. Having a flexural strength of almost 400 MPa, IPS e.max Press offers exceptional stability (Fig. 5). These characteristics convey sufficient strength to veneers, inlays, crowns and similar restorations to withstand comparably high loads. Furthermore, restorations made of IPS e.max Press look impressively beautiful. The product range includes special press ingots, which offer an increased level of opacity for cases in which the underlying dentin shows through. These ingots effectively mask dark areas and provide a natural-looking aesthetic result, even if the teeth are discoloured.

Thin veneers, as presented in this case, are fabricated by creating a fully anatomical wax-up, which is pressed and then characterised with stains. IPS e.max Press (Ivoclar Vivadent) is ideally suited for this purpose. This material is composed of lithium disilicate glass-ceramic and is 2.5 to 3 times stronger than other glass-ceramic materials. Having a flexural strength of almost 400 MPa, IPS e.max Press offers exceptional stability (Fig. 5). These characteristics convey sufficient strength to veneers, inlays, crowns and similar restorations to withstand comparably high loads. Furthermore, restorations made of IPS e.max Press look impressively beautiful. The product range includes special press ingots, which offer an increased level of opacity for cases in which the underlying dentin shows through. These ingots effectively mask dark areas and provide a natural-looking aesthetic result, even if the teeth are discoloured.
eXperience

100% RETENTION

4-IN-1

ETCHES
PRIMES
DESENSITISES

G-BOND

Three-year Clinical Evaluation of Gradia Direct restorations

Three-year Clinical Evaluation of G-Bond in Non-carious Cervical Lesions

Introduction: The aim of this study was to evaluate the clinical performance of G-Bond EIC Corporation, Japan's dentin bonding agent, over 3 years in non-carious cervical lesions (NCCL).

Materials and Methods: Ethics Committee approval was obtained, and 67 restorations were placed (30 ammonia, 15 premolars, 22 molars) in 10 patients aged 45-88 years. All patients received G-Bond composite (GC) and G-Bond dentin bonding agent, according to the manufacturer's instructions. Patients were recalled at 6 months, 1.5 years and 3 years and photographs taken for assessment of colour match and marginal discoloration.

Results: Eight patients were available for recall at 3 years, providing all of which were present. One tooth was extracted for unrelated reasons. Gingival discoloration at 1 year was significantly less than at 3 years, clinically insignificant and staining was unchanged.

G-BOND

G-Bond is the world's first all-in-one primer, bonding agent, and secondary adhesive system for the luting of composites and glass ionomer 4-MET and amalgam for long-term retention. The possible hypersensitivity of the 4-MET resin for phosphoric acid occurs with "wild-end" in the presence of the resin in the dentin, but this may also be a reason for the use of G-Bond in the key to improve the adhesion in combination with the composite.

GC Asia Dental Pte Ltd
19 Loyang Way #05-27 Singapore 508724 T +65 6546 7508 F +65 6546 7577 E gcasia@singnet.com.sg www.gcasia.info
Inlays are particularly suited for this type of minimally invasive thin restoration. First, the dental technician creates an anatomical wax-up of the veneer using organic wax that burns out without leaving residue. In this respect, the final occlusal relief must be taken into consideration as early as during the wax-up. The subsequent application of stain and glaze materials results in a slight increase in the vertical dimensions of the restorations.

The technician should strictly adhere to the minimum thickness stipulated for the relevant lithium disilicate glass-ceramic. According to the manufacturer’s directions, the minimum thickness of IPS e.max Press is 0.5 mm in the cervical area and 0.4 mm at the incisal edge (Fig. 6).

The wax margins are tapered towards the end. The transitions between restoration and tooth structure should be contoured particularly carefully. In this way, the need for later corrections can be pre-empted.

It is well known that inexperienced technicians often find it difficult to create such a thin wax-up and thus tend to create thicker wax-ups. However, it is unnecessary to over-contour the margins as a precaution, as the technician may then have to re-work the restorations after they have been pressed and dried. This takes time. Thus, it is best to contour as suggested by the manufacturer right from the start.

Everywhere under control

The veneers are pressed in a Programat EP 5000 ceramic press furnace at 920 °C. Upon completion of the press cycle, they are carefully divested—adjustments are kept to a minimum. The sprues are separated with thin diamond disks, whilst the objects are kept moist and cool. The attachment points are smoothed out using light pressure and low speed. Next, the restorations are tried in on the dies of the model, and the contact points, occlusion and articulation are checked. If necessary, the surface texture may be adjusted.

After these steps have been completed, the veneers are carefully blasted using aluminium oxide at minimum pressure and cleaned with steam before they are matched to the tooth shade with IPS e.max Ceram Glaze and Stains and IPS e.max Ceram Shades, individualised and glazed (Fig. 7). They are best tried in with Variolink Veneer Try-In pastes. The translucency and shade of these glycine pastes are identical to those of the polymerised Variolink Veneer luting composite and therefore the composite shade, which provides the least perceptible final result, can already be determined and tested before the veneers are cemented in place. This try-in is performed to check the aesthetics of the veneers only; the occlusion is not checked at this point. After the try-in, the water-soluble paste is removed from the veneers in an ultrasonic bath and then the veneers are thoroughly dried.

Incorporation

The patient was impressed with the veneers already at the first try-in. Her smile-on (Fig. 8) was an expression of her happiness and the practice team was pleased. The veneers fit and are corrected lower than on the canines, located higher on the upper central incisors than on the adjacent lateral ones, while the margins on the lateral incisors are located lower than on the canines. The dental arch has been re-shaped as a result of the orthodontic treatment and no longer contains gaps. The upper marginal gingival contour has been corrected to follow a ‘high-low-high’ pattern, which has a decisive effect on the pink-white aesthetics. According to this pattern, the gingival margins are located higher on the upper central incisors than on the adjacent lateral ones, while the margins on the lateral incisors are located lower than on the canines.

As a basic principle, ceramic veneers are inserted using an adhesive technique. In preparing them, the inner surfaces were cleaned with water, dried and etched with 5% hydrofluoric acid (for example IPS Ceramic Etching Gel) for 20 seconds and then carefully rinsed and dried. Next, Monobond Plus was applied and allowed to react for 60 seconds in order to achieve the necessary silanisation of the lithium-disilicate veneers.

The patient’s enamel was etched with 57% phosphoric acid for 30 seconds, rinsed with water and then lightly dried. Next, the oral cavity was isolated with a rubber dam.

The veneers were cemented in place using light-curing Variolink Veneer. This translucent luting composite is suited for anterior restorations with a thickness of less than 2 mm. The restorations have to be sufficiently translucent for the luting composite to be effectively light-cured through them. Variolink Veneer is available in a range of shade values, which cause the restoration in situ to appear brighter or darker. This luting composite ensures a strong bond and high resistance to wear.

We selected Variolink Veneer in the shade Medium Value 0 for the present case, as this shade is neutral and does not have any effect on the brightness of the restoration. The appropriate amount of luting composite was applied to the bonding surfaces of the restoration and the restoration was placed in situ using light pressure. After the surplus material had been removed, each veneer was light-cured for five seconds using a bluephase 20i curing light.

Offering a reliable, high light intensity of 2,000 to 2,200 mW/cm², the Turbo programme eliminates the risk of insufficient polymerisation. The built-in fan ensures a consistently high light intensity. Excess composite material was removed from the margins of the restorations and then the cement joint was covered with a soft silicon Polisher.

Without a doubt, the thinner and more delicate the veneers are, the more difficult it is for the clinician to place them. As delicate and fragile the non-prep veneers presented in this report may appear when they are first delivered, they are highly stable and durable once they have been inserted. The adhesive bond with the enamel ensures a long-lasting high stability and optimal adhesive bond of the restoration in situ.

Looking beautiful

In terms of aesthetics, the treatment of this patient is a complete success. The margins of the restorations are tapered very thinly and are not discernible from the tooth structure even when examined from different angles (Fig. 9). The lower dental arch has been re-shaped as a result of the orthodontic treatment and no longer contains gaps. The upper marginal gingival contour has been corrected to follow a ‘high-high-low’ pattern, which has a decisive effect on the pink-white aesthetics. According to this pattern, the gingival margins are located higher on the upper central incisors than on the adjacent lateral ones, while the margins on the lateral incisors are located lower than on the canines.

If details such as this pattern are not discernible from the tooth structure even when examined from different angles (Fig. 9), the lower dental arch has been re-shaped as a result of the orthodontic treatment and no longer contains gaps. The upper marginal gingival contour has been corrected to follow a ‘high-high-low’ pattern, which has a decisive effect on the pink-white aesthetics. According to this pattern, the gingival margins are located higher on the upper central incisors than on the adjacent lateral ones, while the margins on the lateral incisors are located lower than on the canines.

The restorations reflect the typical characteristics of the natural teeth. Figure 10 shows the beautiful design of the surface texture of the veneers, including their shiny marginal contours. The light is optimally transmitted through the veneers and scattered. The resulting reflections and optical effects impart a natural-looking vibrant appearance.
beyond
Innovation and Excellence in Aesthetic Dentistry

BEYOND™ Power Whitening Accelerator

Our original whitening system - with over 80,000 systems in use worldwide!

FREE three year manufacturer’s warranty
FREE comprehensive online training

BEYOND™ COMPLETE™ Professional Whitening Kit for TETRACYCLINE and SEVERE STAINS

BEYOND™ II Five-Patient Economy Whitening Kit

BEYOND™ Max 5™ Treatment Kit
BEYOND™ Max 10™ Treatment Kit

Use with our BEYOND™ Premier™ Professional Whitening Kit with RENEW™ Gel for total patient satisfaction!

beyond Dental & Health
www.beyonddent.com

BEYOND™ USA HEADQUARTERS
12503 Exchange Dr. Suite 658
Stafford, TX 77477 USA
Tel: +1-281-277-4352
Fax: +1-281-277-4350
E-mail: beyonduSA@beyonddent.com

Purchase direct, or contact one of our stockists to order.

Questions? Call +1-866-695-6452
M-F 8:00 a.m. – 5:30 p.m. CST

Practicon
Practical Innovations for Dentistry
1412 Tyco Parkway - Greenville, NC 27834
Tel: 800-258-7555
Fax: 800-543-3109
info@practicon.com

Nowak Dental Supplies

Den-Med-Pro
Dental Medical Supply Online

Pearson
to the ceramic veneers. The translucent effect of the lithium disilicate glass-ceramic creates a pleasant chameleon effect; the contact points correlate to one another and the incisal triangles are shaped in a slightly open curve. The gingiva does not show any signs of irritation and it features a healthy stippled surface texture.

These veneers offer a decisive advantage when placing restorations with margins in the visible area. In younger patients in particular, the gum line may recede with increasing age. However, receding gum lines do not present a disadvantage in terms of quality or aesthetics with these restorations, as their margins are invisible.

Conclusion

In the present case, the patient's expectations in terms of shape, size and shade were optimally met. Her appearance was favourably altered without sacrificing any dental hard tissue. From the current vantage point, non-prep veneers are thus indicated in cases in which misaligned teeth or differences in tooth length negatively affect the appearance of anterior teeth, and preparation is not a necessity. Compared with conventional veneers or crowns, non-prep veneers represent not only a highly aesthetic, but also a minimally invasive treatment option.

Non-prep veneers expand the range of dental treatment options and provide a viable route to meet the patient's desire for aesthetic improvement, which previously could not be carried out because the resulting loss of tooth structure would have been unacceptable to both the patient and clinician. Hence, this treatment option, which has been used in North America successfully for quite some time and is becoming increasingly popular, is also of interest to young and young-at-heart patients in Europe.

Although the dentist does not need to grind the teeth to place non-prep veneers, the desired result has to be accurately planned and the procedure perfectly prepared. Insertion without guide grooves in particular requires a maximum measure of concentration and sure instinct. Selecting an appropriate material is equally essential. With its exceptional strength, the IPS e.max Press lithium disilicate glass-ceramic is a material suited for this purpose. Once the delicate and fragile-looking ceramic veneers have been adhesively placed in situ, they are durable and stable.

Dr Harald Streit maintains a private practice in Bad Neustadt in Germany. He can be contacted at harald.streit@honestam.de

Bernhard Hellmuth maintains a dental laboratory in Bad Neustadt in Germany. He can be contacted at bh@unikat.dental.de