Predictable Dental Implant Placement into Grafted Sinuses

John C. Minichetti, U.S.A.

Introduction

In many patients, the edentulous posterior maxilla does not have enough vertical height to allow for implants to be placed without intruding the maxillary sinus. This scenario often creates a challenge to the clinician performing implant tooth replacement. Various techniques to treat the posterior sinus have been described.1,2

The classic lateral antrostomy pioneered by Tatum appears to be the most commonly utilized sinus lift procedure for the severely deficient posterior maxilla.1 The procedure consists of demarcating a window or door-hinge osteotomy in the lateral maxillary sinus wall. With careful manipulation the window is luxated or fractured inward and upward to form the “new” sinus floor, although some clinicians favor removal.3 Metical separation of the Schneiderian membrane from the inner wall of the sinus to avoid perforation is essential and can be accomplished with specific instruments. The newly formed space is then filled with a graft material and the surgical site is closed.

Implant placement can be performed at the time of sinus grafting or prior to it allowing bone height for primary stability of the implants (usually 4-5 mm) or delayed for several months (4-9 months) to allow for adequate graft maturation. The sinus graft procedure has become one of the most predictable methods to grow bone height with results of up to 20 mm of bone height and an implant survival rate greater than 98%.5

Bone Grafting Materials

Bone substitute materials have played an important role in dentistry for many years. Today there exists a wide array of graft materials used either alone or in combination that can fill the elevated sinus.6,7

Bone graft materials such as autogenous bone, allografts, xenografts or alloplasts have all been advocated for this procedure.8

Of the various bone augmentation materials available, allografts provide easily procured graft materials.9 Unlike autogenous bone, allografts do not contain live bone cells, but they do provide type I collagen, which is composed mostly of the organic component of bone.

Allografts contain BMPs, which help stimulate bone growth. These proteins, 13 of which have been identified so far (BMP1–BMP13), are considered osteoinductive compounds.10 Osteoinductive materials encourage new bone formation by acting as a signaling agent in initiating and regulating specific tissue formation. This activity leads to a series of developmental processes that result in the differentiation of mesenchymal cells into osteoblasts.1

Materials & Methods

A total of 42 patients underwent sinus grafting procedures. Patients were treated if determined to have no contraindication for minor oral surgery with local anesthesia and/or conscious sedation. Both smokers and non-smokers were included in this study. A total of 56 sinuses were tabulated for these patients.

Each patient was given a complete hard and soft tissue exam, periodontal evaluation and oral examination as indicated. The sinus area was evaluated carefully for mucosal thickening, polypl formation and the presence on any septum (Fig. 1). Diagnostic study models and photographs were obtained pre-operatively as required.

Patients were administered pre-operative surgical antibiotic prophylaxis (amoxicillin 2 g by mouth 1 hour pre-op, or clindamycin 600 mg by mouth 1 hour pre-op, followed by 1 week postoperative three times per day coverage) and corticosteroid therapy pre-operatively (Medrol® Dose Pack, dispense 1 mg/32.5 mg every 4 hours as necessary) and can be accomplished with specific instruments. The newly formed space is then filled with a graft material and the surgical site is closed.

Implant placement can be performed at the time of sinus grafting or prior to it allowing bone height for primary stability of the implants (usually 4-5 mm) or delayed for several months (4-9 months) to allow for adequate graft maturation. The sinus graft procedure has become one of the most predictable methods to grow bone height with results of up to 20 mm of bone height and an implant survival rate greater than 98%.5

Bone Grafting Materials

Bone substitute materials have played an important role in dentistry for many years. Today there exists a wide array of graft materials used either alone or in combination that can fill the elevated sinus.6,7

Bone graft materials such as autogenous bone, allografts, xenografts or alloplasts have all been advocated for this procedure.8

Of the various bone augmentation materials available, allografts provide easily procured graft materials.9 Unlike autogenous bone, allografts do not contain live bone cells, but they do provide type I collagen, which is composed mostly of the organic component of bone.

Allografts contain BMPs, which help stimulate bone growth. These proteins, 13 of which have been identified so far (BMP1–BMP13), are considered osteoinductive compounds.10 Osteoinductive materials encourage new bone formation by acting as a signaling agent in initiating and regulating specific tissue formation. This activity leads to a series of developmental processes that result in the differentiation of mesenchymal cells into osteoblasts.1

Materials & Methods

A total of 42 patients underwent sinus grafting procedures. Patients were treated if determined to have no contraindication for minor oral surgery with local anesthesia and/or conscious sedation. Both smokers and non-smokers were included in this study. A total of 56 sinuses were tabulated for these patients.

Each patient was given a complete hard and soft tissue exam, periodontal evaluation and oral examination as indicated. The sinus area was evaluated carefully for mucosal thickening, polypl formation and the presence on any septum (Fig. 1). Diagnostic study models and photographs were obtained pre-operatively as required.

Patients were administered pre-operative surgical antibiotic prophylaxis (amoxicillin 2 g by mouth 1 hour pre-op, or clindamycin 600 mg by mouth 1 hour pre-op, followed by 1 week postoperative three times per day coverage) and corticosteroid therapy pre-operatively (Medrol® Dose Pack, dispense one pack and follow pack instructions) begun on the morning of surgery.

Patients were scheduled for sinus grafting with local anesthesia with or without conscious sedation. 0.5% bupivacaine with 1:200,000 epi- nephrine or 2% lidocaine with epinephrine 1:100,000 (Cook-Waite, Abbott Labs North Chicago, Ill.) was administered via infiltration and greater palatine nerve blocks.

A full thickness mucoperiosteal flap was elevated with an incision over the crest of the ridge and vertical releasing incisions were made anterior and posterior to the sinus cavity. The sinus area was located and a lateral window osteotomy was outlined with an 8-round surgical bur and irrigation. The bony plate was fractured and the sinus mucosa was carefully elevated (Fig. 2).

The sinuses were then carefully filled with cancellous mineralized bone allograft material 1–2 mm particle size (Puros® TutenGen) (Fig. 3). Larger sinus cavities were grafted with a mixture of Puros and resorbable HA (Osteogen® Implant or Osteograft® N-300 Ceramed).

A collagen membrane (Bio- mend®, Zimmer Dental, Inc., Carlsbad, CA) was placed over the lateral window prior to closure to produce a “caging effect” (ref105). Closure was made with 3-0 or 4-0 silk, chromic gut, or Vicryl® (Ethi- con, Inc. Piscataway, NJ) su- surgeries.

The patients were given postoperative instructions. Pre- scriptions for 500 mg amoxicillin 3-times daily for 5 days (clindamycin 150 mg for those allergic to amoxicillin) and analgesics for 3 days (oxycodo- lone 5 mg/325 acetaminophen every 4 hours as necessary).